SCRATCH MIT Geometry Rubric (year 9)

Transformation geometry (reflection, rotation, translation, enlargement symmetry invariance)

Pattern design (using transformations, using tessellations)

1. Rubric for progressions in student understanding of Angle

Student exemplars for animations of avatar in Scratch (MIT Programming Language - http://scratch.mit.edu/)

GEOMETRY: ANGLE

•	Unitedational	Buttoreture	Restaured	Evenend autom
Prestructural	Unistructural	Multistructural	Relational	Extended abstract
I need help to identify clockwise	I can identify clockwise and	I can identify clockwise and	I can identify clockwise and	I can identify clockwise and
and anticlockwise turns	anticlockwise turns and a	anticlockwise turns and angles	anticlockwise turns and simple	anticlockwise turns and simple
	simple angle (e.g. right angle)	(e.g right angle, acute, obtuse,	angles (e.g. right angle, acute,	angles (right angle, acute,
		straight angle, reflex angle, full	obtuse, straight angle, reflex	obtuse, straight angle, reflex
		turn – or 90, 180, 30, 45, 60)	angle, full turn – or 90, 180, 30,	angle, full turn – or 90, 180, 30,
			45, 60) AND measure, order	45, 60) measure, order and
			and compare angles with for	compare angles with right
			example right angles to create	angles AND estimate and
			reflection, rotation and	predict angles in a triangle,
			translation.	angles around a point, vertically
				opposed angles .
	I can create an animation in	I can create an animation in	I can create an animation in	I can create an animation in
	Scratch where the avatar turns	Scratch where the avatar turns	Scratch where the avatar turns	Scratch where the avatar turns
	clockwise and anticlockwise and	clockwise and anticlockwise and	clockwise and anticlockwise and	clockwise and anticlockwise and
	has a motion path that makes a	has a motion path that makes a	has a motion path that makes	has a motion path that makes
	right angle turn.	right angle turn, acute, obtuse,	a right angle turn, acute,	a right angle turn, acute,
		straight angle, reflex angle, and	obtuse, straight angle, reflex	obtuse, straight angle, reflex
		full turn – or 90, 180, 30, 45, 60.	angle, and full turn – or 90, 180,	angle, and full turn – or 90, 180,
			30, 45, 60. AND measure, order	30, 45, 60. AND measure, order
			and or compare angles with for	and or compare angles with for
			example right angles to create	example right angles to create
			motion paths for reflection,	motion paths for reflection,

© HookED, Pam Hook, 2012. All rights reserved.

Adapted with permission from © Hooked-on-Thinking, 2009. All rights reserved.

		rotation and translation.	rotation and translation. AND
			estimate and predict angles or a
			sequence of angles to create
			animation special effects
Student Exemplar: (insert link	Student Exemplar: (insert link	Student Exemplar: (insert link	Student Exemplar: (insert link
to student Scratch project here)	to student Scratch project here)	to student Scratch project here)	to student Scratch project here)
I can identify the clockwise and	I can identify the angles used in	I can explain using the	I can predict using the
anticlockwise turns and the	the Scratch animation path and	appropriate language of angle	appropriate language of angle
right angle used in the Scratch	describe the movement of the	names, degrees, measurement,	names, degrees, measurement,
animation motion path and	avatar in terms of reflection,	order and comparison why the	order and comparison how to
describe the movement of the	rotation and translation.	angles were chosen to create	use angles to create a special
avatar in terms of rotation		the Scratch animation effect	Scratch animation effects
		used for reflection, rotation and	showing reflection, rotation,
		translation.	translation.
Student Exemplar: (insert link	Student Exemplar: (insert link	Student Exemplar: (insert link	Student Exemplar: (insert link
to student Scratch project	to student Scratch project	to student Scratch project	to student Scratch project
 reflection here)	reflection here)	reflection here)	reflection here)

(Develop SOLO Rubrics to accommodate reflection, rotation, translation, enlargement symmetry invariance)

Refer

Scratch for Educators - http://info.scratch.mit.edu/Educators

Scratch – Projects tagged with geometry angles for ideas on setting Y9 Student challenge

http://scratch.mit.edu/pages/results?cx=010101365770046705949%3Agg_q9cry0mq&cof=FORID%3A11&q=geometry+angles&safe=active&sa =search+#1155

Bill Kerr – South Australian Secondary Teacher from Adelaide bilkerr@gmail.com

Bill writes the most interesting stuff about how to use Scratch in secondary schools – I know him through his comments on Artichoke - his blog is at http://billkerr2.blogspot.com/

http://cegsa.editme.com/SecondaryClassroom

http://www.users.on.net/~billkerr/a/something.htm

http://www.kidslike.info/bill_kerrs_list_of_best_resources_for_teaching_computer_programming_with_scratch/getpage.apx/pageid%3D131157104507

Discussion on computer lab access

Discussion on sequence of introduction

Discussion on scenario used to introduce the Scratch challenge

© HookED, Pam Hook, 2012. All rights reserved. Adapted with permission from © Hooked-on-Thinking, 2009. All rights reserved.

Geometry elements or dimensions for Scratch Animation SOLO Rubric

SOLO Taxonomy		Avatar Reflection	Avatar Rotation	Avatar Translation	
Structured Overview of Learning Outcomes					
Extended abstract Learning Outcome	Learning outcomes go beyond subject and makes links to other concepts - generalises	E.g. all the relevant data and their interrelations are taken up and subsumed under a hypothetical abstract structure that can enable deductions to apply to data or situations not experienced.			
Relational Learning Outcome	Learning outcomes show full connections made, and synthesis of parts to the overall meaning	E.g. the integration and synthesis of information is achieved. The relational response gives an overall concept or principle that accounts for the various isolated data, but it is still tied to concrete experience.			
Multistructural	Learning outcomes	E.g. a number of			

© HookED, Pam Hook, 2012. All rights reserved.

Adapted with permission from © Hooked-on-Thinking, 2009. All rights reserved.

Learning Outcome	show simple connections but importance not noted.	relevant isolated data are used, but the learner doesn't integrate them.		
Unistructural Learning Outcome	Learning outcomes show connections are made, but significance to overall meaning is missing/	E.g. one relevant datum or feature is used and focused on to link the cue and response logically.		
Pre- structural Learning Outcome	Learning outcomes show unconnected information, no organisation.			

Encode decode	 Extended abstract: producing an entity (a precept) which can be used as the beginning of a higher level cycle of procedure – multiprocedure-process – concept. all the relevant data and their interrelations are taken up and subsumed under a hypothetical abstract structure that can enable deductions to apply to data or situations not experienced. Extended abstract responses are at a level of abstraction that is extended into the next mode.
Unitractural	 <u>Relational</u>: the realisation that these several distinct procedures are essentially the same process the integration and synthesis of information is achieved. The relational response gives an overall concept or principle that accounts for the various isolated data, but it is still tied to concrete experience.
	 <u>Multistructural</u>: several distinct procedures having the same effect a number of relevant isolated data are used, but the learner doesn't integrate them.
Ú) Nemes	Unistructural: • a single procedure • one relevant datum or feature is used and focused on to link the cue and response logically. The learner closes too quickly. Prestructural:
•	an incorrect datum is used in order to answer a question or respond to a problem, which may lead to an irrelevant aspect belonging to a previous stage of mode. The learner may even fail to engage in the problem, so he closes (or come to a conclusion of some kind) without even seeing the problem.